
1

COMPUTER SCIENCE DEPARTMENT FACULTY OF
ENGINEERING AND TECHNOLOGY

ADVANCED PROGRAMMING COMP2311
Instructor :Murad Njoum
Office : Masri322

Chapter 17 Binary I/O

Objectives

qTo discover how I/O is processed in Java (§17.2).
qTo distinguish between text I/O and binary I/O (§17.3).
qTo read and write bytes using FileInputStream and

FileOutputStream (§17.4.1).
qTo read and write primitive values and strings using

DataInputStream/DataOutputStream (§17.4.3).
qTo read and write the same file using the RandomAccessFile class

(§17.7).

2

How is I/O Handled in Java?
A File object encapsulates the properties of a file or a path, but does not
contain the methods for reading/writing data from/to a file. In order to
perform I/O, you need to create objects using appropriate Java I/O classes.

3

PrintWriter output = new PrintWriter("temp.txt");
output.println("Java 101");
output.close();

Scanner input = new Scanner(new File("temp.txt"));
System.out.println(input.nextLine());

Program

Input object
created from an

input class

Output object
created from an

output class

Input stream

Output stream

File

File 01011…1001

11001…1011

Text File vs. Binary File
qData stored in a text file are represented in human-readable form.
qData stored in a binary file are represented in binary form. You cannot

read binary files.
qBinary files are designed to be read by programs. For example, the

Java source programs are stored in text files and can be read by a text
editor, but the Java classes are stored in binary files and are read by
the JVM.

qThe advantage of binary files is that they are more efficient to process
than text files.

qAlthough it is not technically precise and correct, you can imagine
that a text file consists of a sequence of characters and a binary file
consists of a sequence of bits. For example, the decimal integer 199 is
stored as the sequence of three characters: '1', '9', '9' in a text file and
the same integer is stored as a byte-type value C7 in a binary file,
because decimal 199 equals to hex C7.

4

Binary I/O
Text I/O requires encoding and decoding. The JVM converts a
Unicode to a file specific encoding when writing a character and
coverts a file specific encoding to a Unicode when reading a
character.
Binary I/O does not require conversions. When you write a byte
to a file, the original byte is copied into the file. When you read a
byte from a file, the exact byte in the file is returned.

5

Binary I/O Classes

6

InputStream (Abstract Class)
The value returned is a byte as an int type.

7

java.io.InputStream

+read(): int

+read(b: byte[]): int

+read(b: byte[], off: int,
len: int): int

+available(): int
+close(): void

+skip(n: long): long

+markSupported(): boolean
+mark(readlimit: int): void
+reset(): void

Reads the next byte of data from the input stream. The value byte is returned as
an int value in the range 0 to 255. If no byte is available because the end of
the stream has been reached, the value –1 is returned.

Reads up to b.length bytes into array b from the input stream and returns the
actual number of bytes read. Returns -1 at the end of the stream.

Reads bytes from the input stream and stores into b[off], b[off+1], …,
b[off+len-1]. The actual number of bytes read is returned. Returns -1 at the
end of the stream.

Returns the number of bytes that can be read from the input stream.
Closes this input stream and releases any system resources associated with the

stream.
Skips over and discards n bytes of data from this input stream. The actual

number of bytes skipped is returned.
Tests if this input stream supports the mark and reset methods.
Marks the current position in this input stream.
Repositions this stream to the position at the time the mark method was last

called on this input stream.

OutputStream (Abstract Class)

The value is a byte as an int type.

8

 java.io .OutputStream

+write(int b): void

+write(b: byte[]): void
+write(b: byte[], off: int,

len: int): void
+close(): void

+flush(): void

Writes the specified byte to this output stream. The parameter b is an int value.
(byte)b is written to the output stream.

Writes all the bytes in array b to the output stream.
Writes b[off], b[off+1], …, b[off+len-1] into the output stream.

Closes th is output stream and releases any system resources associated with the
stream.

Flushes this output stream and forces any buffered output bytes to be written out.

FileInputStream/FileOutputStream

FileInputStream/FileOutputStream associates a binary input/output stream
with an external file. All the methods in FileInputStream/FileOuptputStream
are inherited from its superclasses.

9

InputStream

OutputStream

Object

 ObjectOutputStream

 FilterOutputStream

 FileOutputStream

 BufferedInputStream

DataInputStream

BufferedOutputStream

DataOutputStream

 PrintStream

ObjectInputStream

 FilterInputStream

FileInputStream

FileInputStream
To construct a FileInputStream, use the following
constructors:

public FileInputStream(String filename)
public FileInputStream(File file)

A java.io.FileNotFoundException would occur if you attempt to
create a FileInputStream with a nonexistent file.

10

FileOutputStream
To construct a FileOutputStream, use the following constructors:

public FileOutputStream(String filename)
public FileOutputStream(File file)
public FileOutputStream(String filename, boolean append)
public FileOutputStream(File file, boolean append)

If the file does not exist, a new file would be created. If the file
already exists, the first two constructors would delete the current
contents in the file. To retain the current content and append new
data into the file, use the last two constructors by passing true to the
append parameter.

11

TestFileStream

FilterInputStream/FilterOutputStream

Filter streams are streams that filter bytes for some purpose. The basic byte input stream
provides a read method that can only be used for reading bytes. If you want to read integers,
doubles, or strings, you need a filter class to wrap the byte input stream. Using a filter class
enables you to read integers, doubles, and strings instead of bytes and characters.
FilterInputStream and FilterOutputStream are the base classes for filtering data. When you
need to process primitive numeric types, use DatInputStream and DataOutputStream to filter
bytes.

12

InputStream

OutputStream

Object

 ObjectOutputStream

 FilterOutputStream

 FileOutputStream

 BufferedInputStream

DataInputStream

BufferedOutputStream

DataOutputStream

 PrintStream

ObjectInputStream

 FilterInputStream

FileInputStream

13

public class Example {
public static void main(String[] args) throws Exception
{

FileOutputStream outputStream= new FileOutputStream("out.txt");
DataOutputStream dataoutstream=new DataOutputStream(outputStream);

for (int i = 0; i < 100; i++) {
dataoutstream.write(i);
}

dataoutstream.close();
FileInputStream inputStream= new FileInputStream("out.txt");
DataInputStream datastream=new DataInputStream(inputStream);

datastream.readNBytes(10);
datastream.readNBytes(10);

System.out.println(Arrays.toString(datastream.readNBytes(10)));
//replace with this line . What is the output?
//System.out.println(Arrays.toString(datastream.readAllBytes()));

}
}

What is the output ?

byte[] b=new byte[100];
datastream.read(b);
datastream.read(b,0,50);
datastream.read(b,50,50);

System.out.println(Arrays.toString(b));

14

FileOutputStream outputStream= new FileOutputStream("out.txt");
DataOutputStream dataoutstream=new DataOutputStream(outputStream);
for (int i = 0; i < 100; i++) {
dataoutstream.writeInt(i);
}
dataoutstream.close();

FileInputStream file= new FileInputStream("out.txt");

try (DataInputStream datastream = new DataInputStream(file)) {
while (datastream.available() > 0) {

// Print values
System.out.println(datastream.readInt());

}
}

datastream.close();

}

DataInputStream/DataOutputStream
DataInputStream reads bytes from the stream
and converts them into appropriate primitive
type values or strings.

15

InputStream

OutputStream

Object

 ObjectOutputStream

 FilterOutputStream

 FileOutputStream

 BufferedInputStream

DataInputStream

BufferedOutputStream

DataOutputStream

 PrintStream

ObjectInputStream

 FilterInputStream

FileInputStream

DataOutputStream converts primitive type values or strings into bytes and output the bytes to the stream.

DataInputStream

16

DataInputStream extends FilterInputStream and implements the DataInput interface.

DataOutputStream

17

DataOutputStream extends FilterOutputStream and implements the DataOutput
interface.

Characters and Strings in Binary I/O
A Unicode consists of two bytes. The writeChar(char c) method
writes the Unicode of character c to the output. The
writeChars(String s) method writes the Unicode for each character in
the string s to the output.

18

Why UTF-8? What is UTF-8?

UTF-8 is a coding scheme that allows systems to operate with both
ASCII and Unicode efficiently. Most operating systems use ASCII.
Java uses Unicode. The ASCII character set is a subset of the
Unicode character set. Since most applications need only the ASCII
character set, it is a waste to represent an 8-bit ASCII character as a
16-bit Unicode character. The UTF-8 is an alternative scheme that
stores a character using 1, 2, or 3 bytes. ASCII values (less than
0x7F) are coded in one byte. Unicode values less than 0x7FF are
coded in two bytes. Other Unicode values are coded in three bytes.

Using DataInputStream/DataOutputStream

Data streams are used as wrappers on existing input and output streams to filter data in the
original stream. They are created using the following constructors:

public DataInputStream(InputStream instream)
public DataOutputStream(OutputStream outstream)

The statements given below create data streams. The first statement creates an input stream
for file in.dat; the second statement creates an output stream for file out.dat.

DataInputStream infile = new DataInputStream(new FileInputStream("in.dat"));
DataOutputStream outfile = new DataOutputStream(new FileOutputStream("out.dat"));

19

TestDataStream

Concept of pipeline

20

DataInputStream FileInputStream External File

01000110011 … int, double, string …

DataOutputStream FileOutputStream External File

01000110011 … int, double, string …

Checking End of File

TIP: If you keep reading data at the end of a stream, an EOFException
would occur. So how do you check the end of a file? You can use
input.available() to check it. input.available() == 0 indicates that it is
the end of a file.

21

Order and Format
CAUTION: You have to read the data in the same order and same
format in which they are stored. For example, since names are written
in UTF-8 using writeUTF, you must read names using readUTF.

BufferedInputStream/BufferedOutputStream
Using buffers to speed up I/O

22

InputStream

OutputStream

Object

 ObjectOutputStream

 FilterOutputStream

 FileOutputStream

 BufferedInputStream

DataInputStream

BufferedOutputStream

DataOutputStream

 PrintStream

ObjectInputStream

 FilterInputStream

FileInputStream

BufferedInputStream/BufferedOutputStream does not contain new methods. All the methods
BufferedInputStream/BufferedOutputStream are inherited from the InputStream/OutputStream classes.

Constructing
BufferedInputStream/BufferedOutputStream

// Create a BufferedInputStream
public BufferedInputStream(InputStream in)
public BufferedInputStream(InputStream in, int bufferSize)

// Create a BufferedOutputStream
public BufferedOutputStream(OutputStream out)
public BufferedOutputStream(OutputStreamr out, int bufferSize)

23

24

BufferedInputStream:support mark
DataInputStream: doesn’t support mark() method

FileOutputStream outputStream= new FileOutputStream("out.txt");
DataOutputStream dataoutstream=new DataOutputStream(outputStream);
for (int i = 0; i < 100; i++) {
dataoutstream.write(i);
}
dataoutstream.close();
FileInputStream inputStream= new FileInputStream("out.txt");
DataInputStream datastream=new DataInputStream(inputStream);
System.out.println(datastream.markSupported());

int []b= new int[20];
datastream.readNBytes(10);
datastream.mark(10);

datastream.readNBytes(10);
datastream.reset();//complier error, replace DataInputStream with
BufferedInputStream

System.out.println(Arrays.toString(datastream.readNBytes(10)));

Case Studies: Copy File
This case study develops a program that copies files. The user needs to
provide a source file and a target file as command-line arguments using the
following command:

java Copy source target

The program copies a source file to a target file and displays the number of
bytes in the file. If the source does not exist, tell the user the file is not found.
If the target file already exists, tell the user the file already exists.

25

Copy

26

public class Copy {
public static void main(String[] args) throws IOException {
// Check command-line parameter usage
if (args.length != 2) {
System.out.println(
"Usage: java Copy sourceFile targetfile");

System.exit(1);
}

// Check if source file exists
File sourceFile = new File(args[0]);
if (!sourceFile.exists()) {
System.out.println("Source file " + args[0] + " does not exist");
System.exit(2);

}

// Check if target file exists
File targetFile = new File(args[1]);
if (targetFile.exists()) {
System.out.println("Target file " + args[1] + " already exists");
System.exit(3);

}

27

try (
// Create an input stream
BufferedInputStream input =
new BufferedInputStream(new FileInputStream(sourceFile));

// Create an output stream
BufferedOutputStream output =
new BufferedOutputStream(new FileOutputStream(targetFile));

) {
// Continuously read a byte from input and write it to output
int r, numberOfBytesCopied = 0;
while ((r = input.read()) != -1) {
output.write((byte)r);
numberOfBytesCopied++;

}

// Display the file size
System.out.println(numberOfBytesCopied + " bytes copied");

}
}

}
}

Random Access Files
All of the streams you have used so far are known as
read-only or write-only streams. The external files of
these streams are sequential files that cannot be
updated without creating a new file. It is often necessary
to modify files or to insert new records into files. Java
provides the RandomAccessFile class to allow a file to be
read from and write to at random locations.

28

RandomAccessFile

29

File Pointer
A random access file consists of a sequence of bytes. There is a
special marker called file pointer that is positioned at one of these
bytes. A read or write operation takes place at the location of the file
pointer. When a file is opened, the file pointer sets at the beginning
of the file. When you read or write data to the file, the file pointer
moves forward to the next data. For example, if you read an int value
using readInt(), the JVM reads four bytes from the file pointer and
now the file pointer is four bytes ahead of the previous location.

30

RandomAccessFile Methods

Many methods in RandomAccessFile are the same as those in
DataInputStream and DataOutputStream. For example,
readInt(), readLong(), writeDouble(), readLine(),
writeInt(), and writeLong() can be used in data input stream
or data output stream as well as in RandomAccessFile streams.

31

RandomAccessFile Methods, cont.
void seek(long pos) throws IOException;

Sets the offset from the beginning of the
RandomAccessFile stream to where the next read
or write occurs.

long getFilePointer() IOException;

Returns the current offset, in bytes, from the
beginning of the file to where the next read
or write occurs.

32

RandomAccessFile Methods, cont.
long length()IOException

Returns the length of the file.

final void writeChar(int v) throws IOException
Writes a character to the file as a two-byte Unicode, with the high byte
written first.

final void writeChars(String s)
throws IOException

Writes a string to the file as a sequence of
characters.

33

RandomAccessFile Constructor

RandomAccessFile raf =
new RandomAccessFile("test.dat", "rw"); // allows read
and write

RandomAccessFile raf =
new RandomAccessFile("test.dat", "r"); // read only

34

A Short Example on RandomAccessFile

35

import java.io.*;

public class TestRandomAccessFile {
public static void main(String[] args) throws IOException {
try (RandomAccessFile inout = new RandomAccessFile("inout.dat", "rw");
) {
// Clear the file to destroy the old contents if exists
inout.setLength(0);

// Write new integers to the file
for (int i = 0; i < 200; i++)
inout.writeInt(i);

// Display the current length of the file
System.out.println("Current file length is " + inout.length());

// Retrieve the first number
inout.seek(0); // Move the file pointer to the beginning
System.out.println("The first number is " + inout.readInt());

// Retrieve the second number
inout.seek(1 * 4); // Move the file pointer to the second number
System.out.println("The second number is " + inout.readInt());

36

// Retrieve the tenth number
inout.seek(9 * 4); // Move the file pointer to the tenth number
System.out.println("The tenth number is " + inout.readInt());

// Modify the eleventh number
inout.writeInt(555);

// Append a new number
inout.seek(inout.length()); // Move the file pointer to the end
inout.writeInt(999);

// Display the new length
System.out.println("The new length is " + inout.length());

// Retrieve the new eleventh number
inout.seek(10 * 4); // Move the file pointer to the eleventh number
System.out.println("The eleventh number is " + inout.readInt());

}
}

}

